Physics Subject Headings - Physh
Toggle navigation
Home
Advanced search
About...
My account
Condensed Matter & Materials Physics
Is a meta-term.
Home
Condensed Matter & Materials Physics
Term
Metadata
Condensed Matter & Materials Physics
More specific terms
NT1
↓
0-dimensional systems
►
▼
NT2
↓
Point contacts
NT2
↓
Quantum dots
►
▼
NT3
↓
Double quantum dots
NT2
↓
Quantum rings
NT2
↓
Quantum wells
NT1
↓
1-dimensional systems
►
▼
NT2
↓
1-dimensional spin chains
NT2
↓
Nanotubes
NT2
↓
Nanowires
NT2
↓
Quantum wires
NT1
↓
2-dimensional systems
►
▼
NT2
↓
Coatings
NT2
↓
Germanene
NT2
↓
Graphene
NT2
↓
Honeycomb lattice
NT2
↓
Interfaces
►
▼
NT3
↓
Gas-liquid interfaces
NT3
↓
Liquid-liquid interfaces
NT3
↓
Liquid-solid interfaces
NT3
↓
Solid-gas interfaces
NT3
↓
Solid-solid interfaces
NT3
↓
Vacuum interfaces
NT2
↓
Kagome lattice
NT2
↓
Phosphorene
NT2
↓
Silicene
NT2
↓
Stanene
NT2
↓
Surfaces
NT2
↓
Thin films
►
▼
NT3
↓
Bilayer films
NT3
↓
Monolayer films
NT3
↓
Multilayer thin films
NT3
↓
Ultrathin films
NT2
↓
Transition-metal dichalcogenide
NT2
↓
Two-dimensional electron system
►
▼
NT3
↓
Two-dimensional electron gas
NT3
↓
Wigner crystal
NT1
↓
3-dimensional systems
►
▼
NT2
↓
Alloys
►
▼
NT3
↓
Disordered alloys
NT3
↓
Heusler alloy
►
▼
NT4
↓
Half-Heusler alloy
NT3
↓
Permalloy
NT3
↓
Rare-earth alloys
NT3
↓
Solid solutions
NT3
↓
Transition-metal alloys
►
▼
NT4
↓
Transition-metal rare-earth alloys
NT2
↓
Amorphous materials
►
▼
NT3
↓
Glasses
NT3
↓
Metallic glasses
NT2
↓
Carbon-based materials
►
▼
NT3
↓
Diamond
NT3
↓
Fullerenes
NT3
↓
Graphene
NT3
↓
Graphite
NT3
↓
Nanotubes
NT2
↓
Complex materials
►
▼
NT3
↓
Clathrates
NT3
↓
Heterostructures
►
▼
NT4
↓
Superlattices
NT3
↓
Metamaterials
►
▼
NT4
↓
Acoustic metamaterials
NT4
↓
Hyperbolic metamaterials
NT4
↓
Magnonic crystals
NT4
↓
Negative refraction
NT4
↓
Optical cloaking
NT4
↓
Split-ring resonators
NT3
↓
Van der Waals systems
NT2
↓
Elemental materials
►
▼
NT3
↓
Actinides
NT3
↓
Elemental metals
►
▼
NT4
↓
Alkali metals
NT4
↓
Alkaline earth metals
NT4
↓
Noble metals
NT4
↓
Transition metals
NT3
↓
Elemental semiconductors
NT3
↓
Elemental superconductors
NT3
↓
Lanthanides
NT3
↓
Metalloids
NT2
↓
Hydrogenated materials
NT2
↓
Insulators
NT2
↓
Liquids
►
▼
NT3
↓
Water
NT2
↓
Metals
►
▼
NT3
↓
Elemental metals
►
▼
NT4
↓
Alkali metals
NT4
↓
Alkaline earth metals
NT4
↓
Noble metals
NT4
↓
Transition metals
NT3
↓
Liquid metals
NT2
↓
Molecular solids
►
▼
NT3
↓
Ice
NT2
↓
Ordered compounds
►
▼
NT3
↓
Inorganic compounds
►
▼
NT4
↓
Carbides
NT4
↓
Ceramics
NT4
↓
Chalcogenides
►
NT4
↓
Hydrides
NT4
↓
Ionic solids
NT4
↓
Nitrides
NT4
↓
Oxides
►
NT4
↓
Pnictides
NT4
↓
Skutterudites
NT3
↓
Intermetallic compounds
NT3
↓
Organic compounds
►
▼
NT4
↓
Organic semiconductors
NT4
↓
Organic superconductors
NT4
↓
Organometallic materials
NT2
↓
Porous materials
►
▼
NT3
↓
Clathrates
NT3
↓
Zeolites
NT2
↓
Semimetals
NT1
↓
Acoustic techniques
►
▼
NT2
↓
Surface acoustic wave
NT2
↓
Ultrasound techniques
NT1
↓
Atomic techniques
►
▼
NT2
↓
Atom diffraction
NT2
↓
Atomic force microscopy
►
▼
NT3
↓
Magnetic force microscopy
NT3
↓
Noncontact atomic force microscopy
NT3
↓
Piezoresponse force microscopy
NT2
↓
Field emission & field-ion microscopy
NT2
↓
Ion beam analysis
►
▼
NT3
↓
Elastic back scattering spectroscopy
NT3
↓
Elastic recoil detection
NT3
↓
Nuclear reaction analysis
NT3
↓
Particle-induced x-ray emission
NT3
↓
Rutherford back scattering spectroscopy
NT2
↓
Irradiation
NT2
↓
Mass spectrometry
►
▼
NT3
↓
Secondary ion mass spectrometry
NT3
↓
Time-of-flight mass spectrometry
NT2
↓
Surface scattering
►
▼
NT3
↓
Atom or molecule scattering from surfaces
►
▼
NT4
↓
Helium atom scattering
NT3
↓
Ion scattering from surfaces
NT3
↓
Molecular scattering from surfaces
NT1
↓
Band structure methods
►
▼
NT2
↓
Bloch wave theory
NT2
↓
Bloch-Floquet theorem
NT2
↓
Crystal-field theory
NT2
↓
Embedded atom model
NT2
↓
Free-electron model
NT2
↓
k dot p method
NT2
↓
Korringa-Kohn-Rostoker method
NT2
↓
Luttinger–Kohn model
NT2
↓
Tight-binding model
NT2
↓
Variational wave functional methods
NT2
↓
Wannier function methods
NT1
↓
Cryogenics
►
▼
NT2
↓
Adiabatic demagnetization
NT2
↓
Dilution refrigerator
NT2
↓
Liquid helium cooling
NT2
↓
Liquid nitrogen cooling
NT1
↓
Crystalline systems
►
▼
NT2
↓
Crystal structures
►
▼
NT3
↓
Body-centered cubic
NT3
↓
Cesium chloride structure
NT3
↓
Diamond structure
NT3
↓
Face-centered cubic
NT3
↓
Fluorite structure
NT3
↓
Hexagonal close-packed
NT3
↓
Noncentrosymmetric materials
NT3
↓
Perovskite
NT3
↓
Pyrochlore
NT3
↓
Simple cubic
NT3
↓
Skutterudites
NT3
↓
Sodium chloride structure
NT3
↓
Spinel
NT3
↓
Wurtzite
NT3
↓
Zinc-blende structure
NT2
↓
Polycrystalline materials
NT2
↓
Quasicrystals
NT2
↓
Single crystal materials
NT1
↓
Crystallography
NT1
↓
Devices
►
▼
NT2
↓
Capacitors
NT2
↓
Diodes
►
▼
NT3
↓
LEDs
NT3
↓
Organic LEDs
NT3
↓
Photodiodes
NT2
↓
Flexible electronics
NT2
↓
Micromechanical devices
NT2
↓
Nanomechanical devices
NT2
↓
Organic sensors
NT2
↓
Solid-state detectors
NT2
↓
Thermoelectric systems
NT2
↓
Transistors
►
▼
NT3
↓
Field-effect transistors
►
▼
NT4
↓
MOSFET
NT1
↓
Electrical properties
►
▼
NT2
↓
Antiferroelectricity
NT2
↓
Capacitance
NT2
↓
Charge
NT2
↓
Charge density waves
NT2
↓
Dielectric properties
NT2
↓
Electric polarization
NT2
↓
Electrical conductivity
NT2
↓
Electrocaloric effect
NT2
↓
Electrochemical properties
NT2
↓
Electrostriction
NT2
↓
Ferroelectricity
►
▼
NT3
↓
Ferroelectric domains
NT2
↓
Field emission
NT2
↓
Flexoelectricity
NT2
↓
Impedance
NT2
↓
Permittivity
NT2
↓
Piezoelectricity
NT2
↓
Pyroelectricity
NT2
↓
Skin effect
NT2
↓
Thermionic emission
NT1
↓
Electron techniques
►
▼
NT2
↓
Andreev point contact spectroscopy
NT2
↓
Auger electron spectroscopy
NT2
↓
Electron diffraction
►
▼
NT3
↓
Convergent beam electron diffraction
NT3
↓
Low-energy electron diffraction
►
▼
NT4
↓
Current-voltage low-energy electron diffraction
NT4
↓
Spot-profile analysis LEED
NT3
↓
Reflection high-energy electron diffraction
NT2
↓
Electron energy loss spectroscopy
►
▼
NT3
↓
Electron magnetic circular dichroism
NT3
↓
High-resolution electron energy loss spectroscopy
NT2
↓
Electron microscopy
►
▼
NT3
↓
High-resolution electron microscopy
NT3
↓
High-resolution transmission electron microscopy
NT3
↓
Lorentz microscopy
NT3
↓
Low-energy electron microscopy
NT3
↓
Scanning electron microscopy
►
▼
NT4
↓
Cryo-scanning electron microscopy
NT4
↓
Environmental scanning electron microscopy
NT3
↓
Scanning transmission electron microscopy
►
▼
NT4
↓
Cryo-transmission electron microscopy
NT3
↓
Transmission electron microscopy
NT2
↓
Energy loss near-edge fine structure
NT2
↓
Inelastic electron tunneling spectroscopy
NT1
↓
Electronic structure
►
▼
NT2
↓
Density of states
►
▼
NT3
↓
Band gap
NT3
↓
Local density of states
NT3
↓
van Hove singularity
NT2
↓
Edge states
NT2
↓
Fermi surface
►
▼
NT3
↓
de Haas-van Alphen effect
NT3
↓
Nesting
NT3
↓
Shubnikov-de Haas effect
NT2
↓
Landau levels
NT2
↓
Landau-Zener effect
NT2
↓
Spin-orbit coupling
►
▼
NT3
↓
Dresselhaus coupling
NT3
↓
Dzyaloshinskii-Moriya interaction
NT3
↓
Rashba coupling
NT2
↓
Surface states
NT2
↓
Valleytronics
NT1
↓
Electronically polarized systems
►
▼
NT2
↓
Dielectrics
NT2
↓
Ferroelectrics
►
▼
NT3
↓
Antiferroelectrics
NT3
↓
Relaxor ferroelectrics
NT2
↓
Flexoelectrics
NT2
↓
Multiferroics
NT2
↓
Paraelectrics
NT2
↓
Piezoelectrics
NT2
↓
Pyroelectrics
NT1
↓
Field & string theory models & techniques
►
▼
NT2
↓
Bosonization
NT2
↓
Chern-Simons gauge theory
NT2
↓
Classical solutions in field theory
►
▼
NT3
↓
Domain walls
NT3
↓
Instantons
NT3
↓
Monopoles
NT3
↓
Skyrmions
NT3
↓
Solitons
NT3
↓
Vortices in field theory
NT2
↓
Conformal field theory
NT2
↓
Effective field theory
NT2
↓
Feynman diagrams
NT2
↓
Finite temperature field theory
NT2
↓
Gauge theory techniques
NT2
↓
Gross-Neveu model
NT2
↓
Large-N expansion in field theory
NT2
↓
Non-Abelian models
NT2
↓
Path integrals
NT2
↓
Sachdev-Ye-Kitaev model
NT2
↓
Sigma models
►
▼
NT3
↓
Nonlinear sigma model
NT2
↓
String theory techniques in condensed matter
NT1
↓
First-principles calculations
►
▼
NT2
↓
Basis sets
►
▼
NT3
↓
Plane wave
NT2
↓
Density functional theory
►
▼
NT3
↓
Density functional approximations
►
▼
NT4
↓
DFT+DMFT
NT4
↓
DFT+U
NT4
↓
GGA
NT4
↓
Hybrid functionals
NT4
↓
LDA
NT4
↓
LDA+DMFT
NT4
↓
LDA+U
NT4
↓
Meta-GGA
NT4
↓
Pseudopotentials
NT4
↓
Time-dependent DFT
NT3
↓
Density functional calculations
NT3
↓
Density functional theory development
NT2
↓
GW method
NT2
↓
High-throughput calculations
NT2
↓
Quantum chemistry methods
►
▼
NT3
↓
Configuration interaction
NT3
↓
Coupled cluster
NT3
↓
Hartree-Fock methods
NT3
↓
Molecular orbital theory
NT1
↓
Functional materials
►
▼
NT2
↓
Energy applications
►
▼
NT3
↓
Batteries
NT3
↓
Magnetic refrigeration
NT3
↓
Solar cells
NT3
↓
Thermoelectric systems
NT2
↓
Energy materials
►
▼
NT3
↓
Hydrogen storage materials
NT3
↓
Photovoltaic absorbers
NT2
↓
Smart materials
►
▼
NT3
↓
Actuating materials
NT3
↓
Self-healing systems
NT3
↓
Shape-memory materials
NT3
↓
Stimuli-responsive materials
NT1
↓
Gamma-ray techniques
►
▼
NT2
↓
Compton scattering
NT2
↓
Doppler broadening spectroscopy
NT2
↓
Gamma ray spectroscopy
NT2
↓
Mössbauer spectroscopy
►
▼
NT3
↓
Mössbauer emission spectroscopy
NT2
↓
Positron annihilation spectroscopy
NT1
↓
Infrared techniques
►
▼
NT2
↓
Brewster reflection spectroscopy
NT2
↓
Brillouin scattering & spectroscopy
►
▼
NT3
↓
Brillouin light spectroscopy
NT2
↓
Fourier transform infrared spectroscopy
NT2
↓
Infrared spectroscopy
NT2
↓
Raman spectroscopy
NT2
↓
Rayleigh scattering
NT2
↓
Surface differential reflectance spectroscopy
NT2
↓
Surface-enhanced Raman spectroscopy
NT2
↓
Time-resolved infrared spectroscopy
NT1
↓
Interferometry
►
▼
NT2
↓
Fabry-Pérot interferometry
NT1
↓
Junctions
►
▼
NT2
↓
Josephson junctions
NT2
↓
Molecular junctions
NT2
↓
Schottky barriers
NT2
↓
Tunnel junctions
►
▼
NT3
↓
Magnetic tunnel junctions
NT2
↓
Weak links
NT1
↓
Lattice models in condensed matter
►
▼
NT2
↓
Anderson impurity model
►
▼
NT3
↓
Multichannel Anderson model
NT2
↓
Hubbard model
►
▼
NT3
↓
Bose-Hubbard model
NT3
↓
Extended Hubbard model
NT3
↓
Holstein model
NT2
↓
Kondo lattice model
NT2
↓
Sachdev-Ye-Kitaev model
NT2
↓
Spin lattice models
►
▼
NT3
↓
Heisenberg model
►
▼
NT4
↓
Kitaev-Heisenberg model
NT3
↓
Ising model
►
▼
NT4
↓
Random field Ising model
NT3
↓
Kitaev model
NT3
↓
Potts model
NT3
↓
Random field spin models
►
▼
NT4
↓
Random field Ising model
NT4
↓
Random field XY model
NT3
↓
Spin chains
►
▼
NT4
↓
Classical spin chains
NT4
↓
Quantum spin chains
NT3
↓
Spin ladders
NT3
↓
Spin-boson model
NT3
↓
XY model
NT3
↓
XYZ model
NT2
↓
t-J model
NT1
↓
Magnetic systems
►
▼
NT2
↓
Antiferromagnets
NT2
↓
Chiral magnets
NT2
↓
Diamagnets
NT2
↓
Ferrimagnets
NT2
↓
Ferromagnets
►
▼
NT3
↓
Soft magnets
NT2
↓
Half-metals
NT2
↓
Helimagnets
NT2
↓
Magnetic insulators
NT2
↓
Magnetic multilayers
NT2
↓
Magnetic nanoparticles
NT2
↓
Magnetic semiconductors
NT2
↓
Molecular magnets
NT2
↓
Multiferroics
NT2
↓
Noncollinear magnets
NT2
↓
Paramagnets
NT2
↓
Spin glasses
►
▼
NT3
↓
Spin ice
NT2
↓
Spin valves
NT1
↓
Magnetic techniques
►
▼
NT2
↓
Ferromagnetic resonance
NT2
↓
Magnetic force microscopy
NT2
↓
Magnetization measurements
NT2
↓
Muon spin relaxation & rotation
NT2
↓
Optically detected magnetic resonance
NT2
↓
Spin noise spectroscopy
NT2
↓
Susceptibility measurements
►
▼
NT3
↓
AC susceptibility measurements
NT3
↓
DC susceptibility measurements
NT1
↓
Magnetism
►
▼
NT2
↓
Demagnetization
NT2
↓
Kondo effect
NT2
↓
Magnetic anisotropy
NT2
↓
Magnetic coupling
►
▼
NT3
↓
Magneto-optical effect
NT3
↓
Magnetocaloric effect
NT3
↓
Magnetoelastic effect
NT3
↓
Magnetoelectric effect
NT3
↓
Magnetostriction
NT2
↓
Magnetic interactions
►
▼
NT3
↓
Dipolar interaction
NT3
↓
Exchange bias
NT3
↓
Exchange interaction
NT3
↓
RKKY interaction
NT2
↓
Magnetic order
►
▼
NT3
↓
Antiferromagnetism
NT3
↓
Asperomagnetism
NT3
↓
Diamagnetism
NT3
↓
Ferrimagnetism
NT3
↓
Ferromagnetism
NT3
↓
Frustrated magnetism
►
▼
NT4
↓
Spin ice
NT4
↓
Spin liquid
►
NT3
↓
Metamagnetism
NT3
↓
Paramagnetism
NT3
↓
Sperimagnetism
NT3
↓
Speromagnetism
NT3
↓
Superparamagnetism
NT2
↓
Magnetic phase transitions
►
▼
NT3
↓
Spin state transition
NT2
↓
Magnetic susceptibility
NT2
↓
Magnetic texture
►
▼
NT3
↓
Domain walls
NT3
↓
Helicoidal magnetic texture
NT3
↓
Magnetic domains
NT3
↓
Magnetic vortices
NT3
↓
Magnetization switching
NT3
↓
Skyrmions
NT3
↓
Spin density waves
NT3
↓
Spin texture
NT2
↓
Magnetization dynamics
►
▼
NT3
↓
Magnetization switching
NT3
↓
Ultrafast magnetization dynamics
NT2
↓
Magneto-dielectric effect
NT2
↓
Magnetoacoustic effect
NT2
↓
Magnetotransport
►
▼
NT3
↓
Magnetoresistance
►
▼
NT4
↓
Anisotropic magnetoresistance
NT4
↓
Colossal magnetoresistance
NT4
↓
Giant magnetoresistance
NT4
↓
Spin Hall magnetoresistance
NT4
↓
Tunneling anisotropic magnetoresistance
NT2
↓
Micromagnetism
NT2
↓
Molecular magnetism
NT2
↓
Spin dynamics
NT2
↓
Spintronics
►
▼
NT3
↓
Spin accumulation
NT3
↓
Spin caloritronics
►
▼
NT4
↓
Spin Peltier effect
NT4
↓
Spin Seebeck effect
NT3
↓
Spin coherence
NT3
↓
Spin current
NT3
↓
Spin diffusion
NT3
↓
Spin filtering
NT3
↓
Spin generation
►
▼
NT4
↓
Electrical generation of spin carriers
NT4
↓
Optical generation of spin carriers
NT4
↓
Spin pumping
NT3
↓
Spin injection
►
▼
NT4
↓
Dynamic spin injection
NT4
↓
Electrical spin injection
NT4
↓
Optical spin injection
NT3
↓
Spin polarization
NT3
↓
Spin relaxation
NT3
↓
Spin torque
►
▼
NT4
↓
Spin transfer torque
NT3
↓
Spin waves
NT2
↓
Ultrafast magnetic effects
NT1
↓
Many-body techniques
►
▼
NT2
↓
Approximation methods for many-body systems
►
▼
NT3
↓
Bethe-Salpeter equation
NT3
↓
Cluster expansion
NT3
↓
Coupled mode theory
NT3
↓
Discrete dipole approximation
NT3
↓
Gutzwiller approximation
NT3
↓
Perturbation theory
NT3
↓
Random phase approximation
NT3
↓
Semiclassical methods
NT3
↓
Variational approach
NT2
↓
Density matrix methods
NT2
↓
Diagrammatic methods
NT2
↓
Duality
NT2
↓
Electron-correlation calculations
NT2
↓
Exact solutions for many-body systems
►
▼
NT3
↓
Bethe ansatz
NT3
↓
Exact diagonalization
NT2
↓
Fermi liquid theory
NT2
↓
Green's function methods
►
▼
NT3
↓
Coherent potential approximation
NT3
↓
Nonequilibrium Green's function
NT2
↓
Luttinger liquid model
NT2
↓
Mean field theory
►
▼
NT3
↓
Cluster methods
NT3
↓
Dynamical mean field theory
NT2
↓
Non-Fermi-liquid theory
NT2
↓
Renormalization group
►
▼
NT3
↓
Density matrix renormalization group
NT3
↓
Functional renormalization group
NT3
↓
Matrix product states
NT3
↓
Numerical Renormalization Group
NT3
↓
Projected entangled pair states
NT3
↓
Tensor network renormalization
NT2
↓
Second quantization
NT2
↓
Slave bosons
NT2
↓
Tensor network methods
NT2
↓
Thomas–Fermi model
NT1
↓
Mechanical & acoustical properties
►
▼
NT2
↓
Compressive strength
NT2
↓
Ductility
NT2
↓
Elasticity
►
▼
NT3
↓
Elastic modulus
NT3
↓
Poisson ratio
NT2
↓
Embrittlement
NT2
↓
Ferroelasticity
NT2
↓
Fracture
NT2
↓
Friction
NT2
↓
Hardness
NT2
↓
Material failure
NT2
↓
Mechanical deformation
►
▼
NT3
↓
Anelastic deformation
NT3
↓
Bending
NT3
↓
Creep
NT3
↓
Elastic deformation
NT3
↓
Fatigue
NT3
↓
Plastic deformation
NT3
↓
Shear deformation
NT3
↓
Strain
►
▼
NT4
↓
Epitaxial strain
NT3
↓
Twist deformation
NT2
↓
Plasticity
NT2
↓
Rheology
►
▼
NT3
↓
Flow boundary effects
►
▼
NT4
↓
Flow boundary instabilities
NT4
↓
Flow confinement
NT4
↓
Slip boundary effects
NT4
↓
Wall slip
NT3
↓
Phase properties
NT2
↓
Stress
►
▼
NT3
↓
Stress propagation
NT2
↓
Thermoacoustic effect
NT1
↓
Mechanical testing
►
▼
NT2
↓
Bend & torsion tests
NT2
↓
High strain-rate tests
NT2
↓
Impact test
NT2
↓
Indentation
NT2
↓
Tension tests
NT1
↓
Mesoscopics
►
▼
NT2
↓
Coulomb blockade
NT2
↓
Geometric & topological phases
NT2
↓
Phase slips
NT2
↓
Quantum interference effects
►
▼
NT3
↓
Aharonov-Bohm effect
NT3
↓
Aharonov-Casher effect
NT2
↓
Spin blockade
NT1
↓
Methods in electromagnetism
►
▼
NT2
↓
Classical electromagnetism
►
▼
NT3
↓
Transformation optics
NT2
↓
Effective medium approach
NT2
↓
Elastic wave theory
NT2
↓
Electromagnetic wave theory
NT2
↓
Finite-difference time-domain method
NT2
↓
Optical conformal mapping
NT2
↓
Plane-wave expansion
NT2
↓
Rigorous coupled-wave analysis
NT2
↓
Transfer matrix method
NT1
↓
Methods in magnetism
►
▼
NT2
↓
Holstein-Primakoff method
NT2
↓
Landau-Ginzburg-Wilson theory
NT2
↓
Landau-Lifschitz-Gilbert equation
NT2
↓
Landau-Lifshitz model
NT2
↓
Micromagnetic modeling
NT2
↓
Schwinger boson method
NT1
↓
Methods in superconductivity
►
▼
NT2
↓
BCS theory
NT2
↓
Bogoliubov-de Gennes equations
NT2
↓
Eliashberg theory
NT2
↓
Landau-Ginzburg theory
NT2
↓
London theory
NT2
↓
Resonating valence bond theory
NT1
↓
Methods in transport
►
▼
NT2
↓
Boltzmann theory
NT2
↓
Drude model
NT2
↓
Landauer formula
NT2
↓
S-matrix method in transport
NT2
↓
Time-dependent Ginzburg-Landau theory
NT1
↓
Microwave techniques
►
▼
NT2
↓
Coherent Raman electron spin resonance spectroscopy
NT2
↓
Dielectric spectroscopy
NT2
↓
Electron nuclear double resonance
NT2
↓
Electron paramagnetic resonance
NT2
↓
Electron spin resonance
NT1
↓
Nanostructures
►
▼
NT2
↓
Nanoclusters
NT2
↓
Nanodisks
NT2
↓
Nanoparticles
►
▼
NT3
↓
Core-shell nanoparticles
NT3
↓
Magnetic nanoparticles
NT2
↓
Nanoribbon
NT2
↓
Nanorods
NT2
↓
Nanotubes
NT2
↓
Nanowires
NT1
↓
Neutron techniques
►
▼
NT2
↓
Neutron diffraction
NT2
↓
Neutron imaging
►
▼
NT3
↓
Neutron tomography
NT2
↓
Neutron irradiation
NT2
↓
Neutron pair-distribution function analysis
NT2
↓
Neutron reflectometry
NT2
↓
Neutron scattering
►
▼
NT3
↓
Inelastic neutron scattering
NT3
↓
Quasi elastic neutron scattering
NT3
↓
Small angle neutron scattering
NT2
↓
Neutron spin echo spectroscopy
►
▼
NT3
↓
Spin echo small angle neutron scattering
NT2
↓
Time-of-flight neutron spectroscopy
NT1
↓
Numerical techniques
►
▼
NT2
↓
Data mining
NT2
↓
Finite-element method
NT2
↓
Genetic algorithm
NT2
↓
Machine learning
NT2
↓
Molecular dynamics
NT2
↓
Monte Carlo methods
►
▼
NT3
↓
Entropic sampling methods
NT3
↓
Heatbath algorithm
NT3
↓
Hybrid Monte Carlo algorithm
NT3
↓
Langevin algorithm
NT3
↓
Metropolis algorithm
NT3
↓
Path-integral Monte Carlo
NT3
↓
Quantum Monte Carlo
►
▼
NT4
↓
Diffusion quantum Monte Carlo
NT3
↓
Simulated annealing
NT2
↓
Multiscale modeling
NT2
↓
Phase-field modeling
NT1
↓
Optical & microwave phenomena
►
▼
NT2
↓
Cloaking
NT2
↓
Electroluminescence
NT2
↓
Extraordinary optical transmission
NT2
↓
Faraday effect
NT2
↓
Kerr effect
►
▼
NT3
↓
Magneto-optical Kerr effect
►
▼
NT4
↓
Surface magneto-optical Kerr effect
NT2
↓
Light-induced magnetic effects
NT2
↓
Luminescence
NT2
↓
Nanoantennas
NT2
↓
Optical conductivity
NT2
↓
Optical lattices & traps
►
▼
NT3
↓
BEC-BCS crossover
NT2
↓
Optoelectronics
NT2
↓
Photoconductivity
►
▼
NT3
↓
Photogalvanic effect
NT3
↓
Photovoltaic effect
NT2
↓
Photoinduced effect
NT2
↓
Photonics
►
▼
NT3
↓
Integrated optics
NT3
↓
Nanophotonics
NT3
↓
Topological effects in photonic systems
NT2
↓
Plasma oscillations
NT2
↓
Plasmonics
NT2
↓
Refraction
►
▼
NT3
↓
Birefringence
NT3
↓
Brewster's angle
NT3
↓
Negative refraction
NT1
↓
Optical techniques
►
▼
NT2
↓
Cavity resonators
►
▼
NT3
↓
Whispering gallery mode resonators
NT2
↓
Coherent control
NT2
↓
Confocal imaging
NT2
↓
Electroluminescence
NT2
↓
Ellipsometry
NT2
↓
Fluorescence spectroscopy
NT2
↓
Four-wave mixing
NT2
↓
High-harmonic generation
►
▼
NT3
↓
Optical second-harmonic generation
NT2
↓
Homodyne & heterodyne detection
NT2
↓
Imaging & optical processing
►
▼
NT3
↓
Ghost imaging
NT3
↓
Holography
NT3
↓
Tomography
NT2
↓
Kerr effect
►
▼
NT3
↓
Magneto-optical Kerr effect
►
▼
NT4
↓
Surface magneto-optical Kerr effect
NT2
↓
Laser techniques
►
▼
NT3
↓
Attosecond laser irradiation
NT3
↓
Attosecond laser spectroscopy
NT3
↓
Femtosecond laser irradiation
NT3
↓
Femtosecond laser spectroscopy
NT3
↓
Laser ablation
NT3
↓
Laser-beam impact phenomena
NT3
↓
Optical pumping
NT3
↓
Optical tweezers
NT3
↓
Pump-probe spectroscopy
►
▼
NT4
↓
Transient absorption spectroscopy
NT4
↓
Ultrafast pump-probe spectroscopy
NT3
↓
Two-photon polymerization
NT2
↓
Light scattering
►
▼
NT3
↓
Diffusive wave spectroscopy
NT3
↓
Inelastic light scattering
NT3
↓
Photon correlation spectroscopy
NT3
↓
Static light scattering
NT3
↓
Time-resolved light scattering spectroscopy
NT2
↓
Luminescence
NT2
↓
Optical desorption spectroscopy
NT2
↓
Optical interferometry
NT2
↓
Optical metallography
NT2
↓
Optical microscopy
►
▼
NT3
↓
Annular dark-field imaging
NT3
↓
Dark-field microscopy
NT3
↓
Phase contrast optical microscopy
NT3
↓
Polarized optical microscopy
NT2
↓
Optical nanoscopy
NT2
↓
Photoexcitation
NT2
↓
Photoionization
NT2
↓
Photoluminescence
►
▼
NT3
↓
Fluorescence
►
▼
NT4
↓
Fluorescence recovery after photobleaching
NT4
↓
Light sheet fluorescence microscopy
NT3
↓
Phosphorescence
NT3
↓
Time-resolved photoluminescence
NT2
↓
Photon counting
NT2
↓
Reflectivity
NT1
↓
Phase transitions
►
▼
NT2
↓
Critical phenomena
►
▼
NT3
↓
Critical exponents
NT3
↓
Critical field
NT2
↓
Dynamical phase transitions
NT2
↓
Exotic phases of matter
NT2
↓
Jamming
NT2
↓
Nucleation
NT2
↓
Order parameters
►
▼
NT3
↓
Charge order
NT3
↓
Magnetic order
►
▼
NT4
↓
Antiferromagnetism
NT4
↓
Asperomagnetism
NT4
↓
Diamagnetism
NT4
↓
Ferrimagnetism
NT4
↓
Ferromagnetism
NT4
↓
Frustrated magnetism
►
NT4
↓
Metamagnetism
NT4
↓
Paramagnetism
NT4
↓
Sperimagnetism
NT4
↓
Speromagnetism
NT4
↓
Superparamagnetism
NT3
↓
Nematic order
NT3
↓
Orbital order
NT3
↓
Stripes
NT3
↓
Structural order parameter
NT3
↓
Superconducting order parameter
►
▼
NT4
↓
d-wave
NT4
↓
f-wave
NT4
↓
p-wave
NT4
↓
s-wave
NT2
↓
Phase diagrams
NT2
↓
Phase separation
►
▼
NT3
↓
Dynamics of phase separation
NT3
↓
Microphase separation
NT3
↓
Spinodal decomposition
NT3
↓
Surface-driven phase separation
NT2
↓
Phase transitions by order
►
▼
NT3
↓
BKT transition
NT3
↓
First order phase transitions
NT3
↓
Second order phase transitions
NT2
↓
Quantum phase transitions
►
▼
NT3
↓
Quantum criticality
NT2
↓
Specific phase transitions
►
▼
NT3
↓
Crystallization
NT3
↓
Gelation
NT3
↓
Glass transition
NT3
↓
Liquid crystal phase transitions
NT3
↓
Liquid-gas phase transition
NT3
↓
Liquid-liquid phase transition
►
▼
NT4
↓
Spinodal decomposition
NT3
↓
Liquid-solid phase transition
NT3
↓
Magnetic phase transitions
►
▼
NT4
↓
Spin state transition
NT3
↓
Martensitic phase transition
NT3
↓
Metal-insulator transition
NT3
↓
Mott-superfluid transition
NT3
↓
Nematic phase transition
NT3
↓
Solid-solid transformations
NT3
↓
Structural phase transition
NT3
↓
Superconducting phase transition
NT3
↓
Superconductor-insulator transition
NT2
↓
Transition temperature
NT1
↓
Photoelectron techniques
►
▼
NT2
↓
Photoelectron diffraction
NT2
↓
Photoelectron emission microscopy
NT2
↓
Photoemission spectroscopy
►
▼
NT3
↓
Angle-resolved photoemission spectroscopy
NT3
↓
Spin-resolved photoemission spectroscopy
NT3
↓
Time & angle resolved photoemission spectroscopy
NT3
↓
Time-resolved two-photon photoemission spectroscopy
NT3
↓
Two-photon photoelectron spectroscopy
NT3
↓
Ultraviolet photoelectron spectroscopy
NT1
↓
Pressure techniques
NT1
↓
Quantum fluids & solids
►
▼
NT2
↓
Bose-Einstein condensates
►
▼
NT3
↓
Spinor Bose-Einstein condensates
NT2
↓
Fermionic condensates
NT2
↓
Molecular condensates
NT2
↓
Polariton condensate
NT2
↓
Superfluids
►
▼
NT3
↓
Helium-3 superfluids
NT3
↓
Helium-4 superfluids
NT3
↓
Mixtures of 3He & 4He
NT3
↓
Mott superfluids
NT2
↓
Supersolids
NT2
↓
Ultracold gases
NT1
↓
Quantum master equation
NT1
↓
Quantum oscillation techniques
►
▼
NT2
↓
de Haas-van Alphen effect
NT2
↓
Shubnikov-de Haas effect
NT1
↓
Quasiparticles & collective excitations
►
▼
NT2
↓
Anyons
►
▼
NT3
↓
Majorana bound states
NT2
↓
Bosons
►
▼
NT3
↓
Composite bosons
NT3
↓
Cooper pairs
NT3
↓
Goldstone bosons
NT3
↓
Hard-core bosons
NT2
↓
Doublon
NT2
↓
Excitons
►
▼
NT3
↓
Biexcitons
NT3
↓
Orthoexcitons
NT3
↓
Paraexcitons
NT2
↓
Fermions
►
▼
NT3
↓
Composite fermions
NT3
↓
Dirac fermions
NT3
↓
Majorana fermions
NT3
↓
Parafermions
NT3
↓
Spinless fermions
NT3
↓
Weyl fermions
NT2
↓
Fractionalization
NT2
↓
Holon
NT2
↓
Lifetimes & widths
NT2
↓
Magnons
NT2
↓
Phasons
NT2
↓
Phonons
►
▼
NT3
↓
Acoustic phonons
NT3
↓
Optical phonons
NT2
↓
Plasmons
►
▼
NT3
↓
Surface plasmons
NT2
↓
Polaritons
►
▼
NT3
↓
Exciton polariton
NT3
↓
Intersubband polariton
NT3
↓
Phonon polariton
NT3
↓
Surface plasmon polariton
NT2
↓
Polarons
NT2
↓
Spinon
NT2
↓
Trions
NT2
↓
Triplon
NT1
↓
Resonance techniques
►
▼
NT2
↓
Cyclotron resonance
NT2
↓
Dynamic nuclear polarization
NT2
↓
Electron nuclear double resonance
NT2
↓
Electron paramagnetic resonance
NT2
↓
Electron spin resonance
NT2
↓
Ferromagnetic resonance
NT2
↓
Mössbauer spectroscopy
►
▼
NT3
↓
Mössbauer emission spectroscopy
NT2
↓
Muon spin resonance
NT2
↓
Nuclear magnetic resonance
►
▼
NT3
↓
Functional magnetic resonance imaging
NT3
↓
Magnetic resonance imaging
NT2
↓
Nuclear quadrupole resonance
NT2
↓
Nuclear spin resonance
NT2
↓
Optically detected magnetic resonance
NT2
↓
Tunnel diode resonance
NT1
↓
Sample preparation
►
▼
NT2
↓
Annealing
NT2
↓
Arc discharge
NT2
↓
Chemical synthesis
NT2
↓
Cold working
NT2
↓
Compaction
NT2
↓
Crystal growth
NT2
↓
Crystallization
NT2
↓
Electropolishing
NT2
↓
Electrospinning
NT2
↓
Epitaxy
►
▼
NT3
↓
Chemical beam epitaxy
NT3
↓
Liquid epitaxy
NT3
↓
Molecular beam epitaxy
NT2
↓
Etching
►
▼
NT3
↓
Plasma etching
NT2
↓
Evaporation
NT2
↓
Film deposition
►
▼
NT3
↓
Chemical deposition
►
▼
NT4
↓
Chemical solution deposition
NT4
↓
Chemical vapor deposition
NT4
↓
Plating
NT3
↓
Physical deposition
►
▼
NT4
↓
Langmuir-Blodgett deposition
NT4
↓
Physical vapor deposition
NT4
↓
Spin coating
NT2
↓
Focused ion beam
NT2
↓
Glow discharge
NT2
↓
Heat treatment
NT2
↓
Ion implantation
NT2
↓
Laser ablation
NT2
↓
Laser annealing
NT2
↓
Lithography
NT2
↓
Melt-spinning
NT2
↓
Powder metallurgy
NT2
↓
Precipitation
NT2
↓
Sintering
NT2
↓
Sol-gel process
NT2
↓
Solidification
NT2
↓
Sputtering
NT2
↓
Strain engineering
NT2
↓
Welding
NT1
↓
Scanning techniques
►
▼
NT2
↓
Atomic force microscopy
►
▼
NT3
↓
Magnetic force microscopy
NT3
↓
Noncontact atomic force microscopy
NT3
↓
Piezoresponse force microscopy
NT2
↓
Scanning electron microscopy
►
▼
NT3
↓
Cryo-scanning electron microscopy
NT3
↓
Environmental scanning electron microscopy
NT2
↓
Scanning probe microscopy
NT2
↓
Scanning tunneling microscopy
►
▼
NT3
↓
Annular dark-field imaging
NT3
↓
Spin-polarized scanning tunneling microscopy
NT2
↓
Scanning tunneling spectroscopy
NT1
↓
Semiconducting systems
NT1
↓
Semiconductors
►
▼
NT2
↓
Amorphous semiconductors
NT2
↓
Doped semiconductors
NT2
↓
Elemental semiconductors
NT2
↓
Magnetic semiconductors
NT2
↓
Narrow band gap systems
NT2
↓
Semiconductor compounds
►
▼
NT3
↓
II-VI semiconductors
NT3
↓
III-V semiconductors
NT3
↓
Intermetallic semiconductors
NT2
↓
Wide band gap systems
NT1
↓
Strongly correlated systems
►
▼
NT2
↓
Charge-transfer insulators
NT2
↓
Heavy-fermion systems
NT2
↓
Kondo insulators
NT2
↓
Mott insulators
NT1
↓
Structural properties
►
▼
NT2
↓
Chemical bonding
NT2
↓
Composition
NT2
↓
Crystal phenomena
►
▼
NT3
↓
Crystal binding
NT3
↓
Crystal defects
NT3
↓
Crystal forms
NT3
↓
Crystal growth
NT3
↓
Crystal melting
NT3
↓
Crystal orientation
NT3
↓
Crystal stoichiometry
NT3
↓
Crystal structure
NT3
↓
Crystal symmetry
NT3
↓
Crystallization
NT3
↓
Nanocrystals
NT3
↓
Polycrystals
NT3
↓
Quasicrystalline structure
NT2
↓
Defects
►
▼
NT3
↓
Color centers
NT3
↓
Disclinations & dislocations
NT3
↓
Dopants
NT3
↓
Grain boundaries
NT3
↓
Impurities
NT3
↓
Interstitials
NT3
↓
Line defects
NT3
↓
Point defects
NT3
↓
Stacking faults
NT3
↓
Twinning
NT3
↓
Vacancies
►
▼
NT4
↓
NV centers
►
NT2
↓
Domains
►
▼
NT3
↓
Domain walls
NT2
↓
Elasticity
►
▼
NT3
↓
Elastic modulus
NT3
↓
Poisson ratio
NT2
↓
Ferroelasticity
NT2
↓
Jahn-Teller effect
NT2
↓
Lattice dynamics
►
▼
NT3
↓
Anharmonic lattice dynamics
NT3
↓
Electron-phonon coupling
NT2
↓
Microstructure
NT2
↓
Peierls transition
NT2
↓
Plasticity
NT2
↓
Pressure effects
►
▼
NT3
↓
Shock waves
NT2
↓
Shape memory effect
NT1
↓
Superconductivity
►
▼
NT2
↓
Andreev reflection
NT2
↓
Coherence length
NT2
↓
FFLO
NT2
↓
Impurities in superconductors
NT2
↓
Isotope effect
NT2
↓
Josephson effect
NT2
↓
Meissner effect
NT2
↓
Multiband superconductivity
NT2
↓
Odd-frequency superconductivity
NT2
↓
Pairing mechanisms
►
▼
NT3
↓
Electron-mediated pairing
NT3
↓
Electron-phonon coupling
NT3
↓
Spin fluctuations
NT2
↓
Proximity effect
NT2
↓
Spin-singlet pairing
NT2
↓
Spin-triplet pairing
NT2
↓
Superconducting fluctuations
NT2
↓
Superconducting gap
►
▼
NT3
↓
Pseudogap
NT2
↓
Superconducting order parameter
►
▼
NT3
↓
d-wave
NT3
↓
f-wave
NT3
↓
p-wave
NT3
↓
s-wave
NT2
↓
Superconducting phase transition
NT2
↓
Superfluid density
►
▼
NT3
↓
Penetration depth
NT2
↓
Vortices in superconductors
►
▼
NT3
↓
Flux pinning
NT3
↓
Vortex lattices
NT1
↓
Superconductors
►
▼
NT2
↓
Elemental superconductors
NT2
↓
Ferromagnetic superconductors
NT2
↓
High-temperature superconductors
NT2
↓
Iron-based superconductors
NT2
↓
Low-temperature superconductors
NT2
↓
Superconducting devices
►
▼
NT3
↓
Josephson junctions
NT3
↓
SQUID
NT3
↓
Superconducting qubits
NT2
↓
Type-I superconductors
NT2
↓
Type-II superconductors
NT2
↓
Unconventional superconductors
NT1
↓
Superfluidity
►
▼
NT2
↓
Vortices in superfluids
NT1
↓
Surface & interfacial phenomena
►
▼
NT2
↓
Adhesion
NT2
↓
Adsorption
►
▼
NT3
↓
Chemisorption
NT3
↓
Physisorption
NT2
↓
Atom impact & scattering
NT2
↓
Cohesion
►
▼
NT3
↓
Self-healing
NT2
↓
Cracking
NT2
↓
Crazing
NT2
↓
Desorption
NT2
↓
Fracture
NT2
↓
Friction
NT2
↓
Growth
►
▼
NT3
↓
Island
NT2
↓
Ion impact & scattering
NT2
↓
Irradiation effects
►
▼
NT3
↓
Radiation damage
NT2
↓
Island
NT2
↓
Lubrication
NT2
↓
Nucleation on surfaces
NT2
↓
Roughness
NT2
↓
Surface diffusion
NT2
↓
Surface instabilities
►
▼
NT3
↓
Buckling
NT3
↓
Cratering
NT3
↓
Creasing
NT3
↓
Wrinkling
NT2
↓
Surface reconstruction
NT2
↓
Tribology
►
▼
NT3
↓
Abrasion
NT3
↓
Friction
NT3
↓
Lubrication
NT3
↓
Wear
NT2
↓
Wall slip
NT2
↓
Wetting
►
▼
NT3
↓
Capillarity
NT3
↓
Dewetting
NT3
↓
Electrowetting
NT3
↓
Hydrophilic surfaces
NT3
↓
Hydrophobic surfaces
NT3
↓
Oleophobic surfaces
NT3
↓
Omniphobic surfaces
NT3
↓
Wetting transitions
►
▼
NT4
↓
Complete wetting
NT4
↓
Critical wetting
NT4
↓
Partial wetting
NT1
↓
Symmetries in condensed matter
►
▼
NT2
↓
Continuous symmetries in condensed matter
►
▼
NT3
↓
Chiral symmetry
NT3
↓
Conformal symmetry
NT3
↓
Exceptional Lie algebra symmetries
NT3
↓
Infinite dimensional symmetries
NT3
↓
O(N) symmetry
NT3
↓
Sl(N) symmetry
NT3
↓
SO(N) symmetry
NT3
↓
Sp(2N) symmetry
NT3
↓
SU(N) symmetries
NT3
↓
U(N) symmetry
NT2
↓
Discrete symmetries in condensed matter
►
▼
NT3
↓
C-symmetry
NT3
↓
Inversion symmetry
NT3
↓
P-symmetry
NT3
↓
PT-symmetry
NT3
↓
T-symmetry
NT3
↓
Z_2 symmetry
NT2
↓
Gauge symmetries
NT2
↓
Projective symmetries
NT1
↓
Terahertz techniques
►
▼
NT2
↓
Terahertz spectroscopy
►
▼
NT3
↓
Terahertz time-domain spectroscopy
NT1
↓
Thermal properties
►
▼
NT2
↓
Entropy
NT2
↓
Heat transfer
NT2
↓
Specific heat
NT2
↓
Temperature
NT2
↓
Thermal conductivity
►
▼
NT3
↓
Electron thermal conductivity
NT3
↓
Lattice thermal conductivity
NT3
↓
Thermal Hall effect
NT2
↓
Thermal expansion
NT2
↓
Thermoelasticity
NT2
↓
Thermoelectric effects
►
▼
NT3
↓
Ettingshausen effect
NT3
↓
Nernst effect
NT3
↓
Peltier effect
NT3
↓
Seebeck effect
NT3
↓
Thermopower
NT2
↓
Thermomagnetic effects
NT2
↓
Thermomechanical effects
NT1
↓
Thermal techniques
►
▼
NT2
↓
Calorimetry
►
▼
NT3
↓
Differential scanning calorimetry
NT2
↓
Differential thermal analysis
NT2
↓
Dynamic mechanical analysis
NT2
↓
Pyrometry
NT2
↓
Specific heat measurements
NT2
↓
Thermodilatometry
NT2
↓
Thermogravimetric analysis
NT2
↓
Thermomechanical analysis
NT2
↓
Thermoreflectance
NT1
↓
Topological materials
►
▼
NT2
↓
Dirac semimetal
NT2
↓
Node-line semimetals
NT2
↓
Topological insulators
►
▼
NT3
↓
Chern insulators
NT2
↓
Topological superconductors
NT2
↓
Weyl semimetal
NT1
↓
Topological phases of matter
►
▼
NT2
↓
Symmetry protected topological states
NT2
↓
Topological insulators
►
▼
NT3
↓
Chern insulators
NT2
↓
Topological phase transition
NT2
↓
Topological superconductors
NT1
↓
Transport phenomena
►
▼
NT2
↓
Ballistic transport
NT2
↓
Carrier dynamics
NT2
↓
Carrier generation & recombination
NT2
↓
Classical transport
NT2
↓
Diffusion
►
▼
NT3
↓
Anomalous diffusion
NT3
↓
Self-diffusion
NT2
↓
Diffusiophoresis
NT2
↓
Dissipative dynamics
NT2
↓
Electrical conductivity
NT2
↓
Electron relaxation
NT2
↓
Electrophoresis
NT2
↓
Hall effect
►
▼
NT3
↓
Anomalous Hall effect
NT3
↓
Quantum anomalous Hall effect
NT3
↓
Quantum Hall effect
►
▼
NT4
↓
Fractional quantum Hall effect
NT4
↓
Integer quantum Hall effect
NT3
↓
Quantum spin Hall effect
NT3
↓
Spin Hall effect
►
▼
NT4
↓
Inverse spin Hall effect
NT3
↓
Topological Hall effect
NT2
↓
Hopping transport
NT2
↓
Ionic transport
NT2
↓
Kane-Mele model
NT2
↓
Kondo effect
NT2
↓
Localization
►
▼
NT3
↓
Anderson localization
NT3
↓
Many-body localization
NT3
↓
Weak antilocalization
NT3
↓
Weak localization
NT2
↓
Percolation
NT2
↓
Quantum transport
NT2
↓
Skin effect
NT2
↓
Thermophoresis
NT1
↓
Transport techniques
►
▼
NT2
↓
3-terminal techniques
NT2
↓
Deep level transient spectroscopy
NT2
↓
Hall bar
NT2
↓
Resistivity measurements
NT1
↓
X-ray techniques
►
▼
NT2
↓
Energy spectroscopy for chemical analysis
NT2
↓
Energy-dispersive x-ray spectroscopy
NT2
↓
Hard x-ray photoelectron spectroscopy
NT2
↓
X-ray absorption spectroscopy
►
▼
NT3
↓
X-ray absorption fine structure spectroscopy
NT3
↓
X-ray absorption near-edge spectroscopy
NT2
↓
X-ray diffraction
►
▼
NT3
↓
Grazing incidence X-ray diffraction
NT3
↓
X-ray diffraction topography
NT3
↓
X-ray powder diffraction
NT2
↓
X-ray emission spectroscopy
NT2
↓
X-ray fluorescence holography
NT2
↓
X-ray holography
NT2
↓
X-ray imaging
NT2
↓
X-ray magnetic circular dichroism
NT2
↓
X-ray magnetic linear dichroism
NT2
↓
X-ray pair-distribution function analysis
NT2
↓
X-ray photoelectron diffraction
NT2
↓
X-ray photoelectron spectroscopy
NT2
↓
X-ray photoemission electron microscopy
NT2
↓
X-ray photon correlation spectroscopy
NT2
↓
X-ray reflectivity
NT2
↓
X-ray scattering
►
▼
NT3
↓
Coherent X-ray scattering
NT3
↓
Resonant elastic x-ray scattering
NT3
↓
Resonant inelastic x-ray scattering
NT3
↓
Small-angle x-ray scattering
NT3
↓
X-ray diffuse scattering
NT3
↓
X-ray resonant magnetic scattering
NT2
↓
X-ray standing waves
NT2
↓
X-ray tomography
Date of creation
14-Sep-2018
Modified
15-Sep-2018
Accepted term
14-Sep-2018
Descendant terms
605
ARK
ark:/99152/t3701pqg53zvnj
More specific terms
67
Alternative terms
0
Related terms
0
Notes
0
Metadata
BS8723-5
DC
MADS
SKOS-Core
VDEX
XTM
Zthes
JSON
JSON-LD
Search
Central terms
Crystal structures
Crystal phenomena
Spintronics
Defects
Spin lattice models
Continuous symmetries in condensed matter
Mechanical deformation
Monte Carlo methods
Magnetic texture
Alloys